# Scripting the Hypergeometrical Standard Model

I ended up finding easier to do everything in Python than in Mathematica.  Here is the initial script.  I will expand it every so often.  This script is always in Github.  Follow the collaborate link in the menu.

Here I am creating the different parts of the coherence (Fundamental Dilator).  Once the Fundamental Dilator is created, it should be a simple matter to create the Hyperons.  Once the graphical respresentation of this theory is easier on the eyes than the Balls Diagram, people should start to understand..:)

Of course, everything I am plotting here, I stated clearly in words throughout the theory.

Cheers,

MP

`from mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdfrom itertools import cycle# ATOM## Smallest particle of an element which shows all properties of element is called atom.# Some characteristics of "atoms" are as follows:# Atom takes part in chemical reactions independently.# Atom can be divided into a number of sub-atomic particles.# Fundamental particles of atom are electron, proton and neutron.# CHARACTERISTICS OF ELECTRON## Charge: It is a negatively charged particle.# Magnitutide of charge: Charge of electron is 1.6022 x 10-19 Coulomb.# Mass of electron: Mass of electron is 0.000548597 a.m.u. or 9.1 x 10-31 kg.# Symbol of electron: Electron is represented by "e".# Location in the atom: Electrons revolve around the nucleus of atom in different circular orbits.# CHARACTERISTICS OF PROTON## Charge: Proton is a positively charged particle.# Magnitude of charge: Charge of proton is 1.6022 x 10-19 coulomb.# Mass of proton: Mass of proton is 1.0072766 a.m.u. or 1.6726 x 10-27 kg.# Comparative mass: Proton is 1837 times heavier than an electron.# Position in atom: Protons are present in the nucleus of atom.# For latest information , free computer courses and high impact notes visit : www.citycollegiate.com# CHARACTERISTICS OF NEUTRON## charge: It is a neutral particle because it has no charge.# Mass of neutron: . Mass of neutron is 1.0086654 a.m.u. or 1.6749 x 10-27 kg.# Compartive mass: Neutron is 1842 times heavier than an electron.# Location in the atom: Neutrons are present in the nucleus of an atom.# Proton Charge=-Electron Charge = 1.6022 x 10-19 Coulomb# Proton Mass = 1837 Electron Mass# These are the thicknesses along the radial direction (Fourth Dimensional direction perpendicular to our# 3D Universe (LightSpeed Expanding Hypersperical Universe).# The total 4D volume should be identical.def swap_cols(arr, frm, to):    arr[:,[frm, to]] = arr[:,[to, frm]]    return arrdef swap_rows(arr, frm, to):    arr[[frm, to], :] = arr[[to, frm], :]    return arrdef getSpin(axis=None):    spin = np.identity(4)    if axis is None:        return spin    spin=swap_cols(spin, axis,3)    return spindef getDilatorSequence(particle=0, axis=0, spin='half'):    hp = 1e-9    he = hp * 1837    ident = np.identity(4)    rotate = getSpin(axis=axis)    rotationMatrix = [ident,rotate,ident,rotate]    # Particle Definition    protonCoeff = np.array([2/3, 2/3, -1/3,hp]).T    electronCoeff = np.array([0,-2/3,-1/3,he]).T    positronCoeff = np.array([0,2/3,1/3,-he]).T    antiprotonCoeff = np.array([-2/3, -2/3, 1/3,-hp]).T    if(spin=='half'):        listA = [protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff,protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff]    else:        listA=[protonCoeff,positronCoeff ,antiprotonCoeff, electronCoeff,protonCoeff,positronCoeff ,antiprotonCoeff,electronCoeff ]    listA = listA[particle:(particle+4)]    dilatorSequence = [np.dot(rotationMatrix[i],listA[i]) for i in np.arange(4)]    A = [x[0:3] for x in dilatorSequence]    return A# The actual amplitude of the metric distorsion is not know. Considering that it is very, very small# the metric displacement will be approximated by the sum of the 3D coefficients times the radial thickness# hp is unknownclass dilator(object):        def __init__(self,particle,axis,spin,ax,position=[0,0]):            self.unit = {}            self.ax=ax            self.particle=particle            self.dilatorSeq=getDilatorSequence(particle=particle, axis=axis, spin=spin)            self.axis=axis            self.center = [position + [i*np.pi/2 ]for i in np.arange(5)]            self.spin=spin        def plotMe(self):            i=0            max_radius = 2.5 * np.pi            for t in self.dilatorSeq:                self.unit[i]=unit(t,self.ax,self.center[i]).plotMe(ax)                i=i+1            plt.show()# Radii corresponding to the coefficients:class unit(object):    def __init__(self,coeffs,ax,center=(0,0)):        self.ax = ax        self.coeffs=coeffs        self.charge=np.sum(coeffs)        print(self.charge)        self.center=center        # Scaling factor        a=2        self.rx, self.ry, self.rz = [(e/a+1.0) for e in coeffs]        # Set of all spherical angles:        self.u = np.linspace(0, 2 * np.pi, 100)        self.v = np.linspace(0, np.pi, 100)    def surface(self,center=(0,0,0)):        # Cartesian coordinates that correspond to the spherical angles:        # (this is the equation of an ellipsoid):        u=self.u        v=self.v        x = (self.rx-1) * np.outer(np.cos(u), np.sin(v))+self.center        y = (self.ry-1) * np.outer(np.sin(u), np.sin(v))+self.center        z = (self.rz-1) * np.outer(np.ones_like(u), np.cos(v))+self.center        return x,y,z    def plotMe(self,ax):        # Plot:        x,y,z = self.surface()        color='g'        if(self.charge<0):            color='r'        self.ax.plot_surface(x, y, z,  rstride=4, cstride=4, color=color)if(__name__=='__main__'):    # for spin in ['half', 'minus-half']:    #     print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Spin=  ',spin)    #     for particle in np.arange(4):    #         print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Particle=', particle)    #         for axis in np.arange(3):    #             print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Axis=', axis)    #             A = getDilatorSequence(particle=particle, axis=axis, spin=spin)    #             print(' spin = ', spin, ' particle = ', particle, ' axis = ', axis)    #             for t in A:    #                 print(t)    #             print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')    fig = plt.figure(figsize=plt.figaspect(1))    # Square figure    ax = fig.add_subplot(111, projection='3d')    getattr(ax, 'set_{}lim'.format('x'))((-np.pi / 4, np.pi / 4))    getattr(ax, 'set_{}lim'.format('y'))((-np.pi / 4, np.pi / 4))    getattr(ax, 'set_{}lim'.format('z'))((-np.pi / 4, 2.25 * np.pi))    proton = dilator(particle=0,axis=0,ax=ax,spin='half',position=[0,0])    proton.plotMe()    a=1`
Currently unrated

### New Comment

required

required (not published)

optional

required