I ended up finding easier to do everything in Python than in Mathematica. Here is the initial script. I will expand it every so often. This script is always in Github. Follow the collaborate link in the menu.

Here I am creating the different parts of the coherence (Fundamental Dilator). Once the Fundamental Dilator is created, it should be a simple matter to create the Hyperons. Once the graphical respresentation of this theory is easier on the eyes than the Balls Diagram, people should start to understand..:)

Of course, everything I am plotting here, I stated clearly in words throughout the theory.

Cheers,

MP

from mpl_toolkits.mplot3d import Axes3DShare on Twitter Share on Facebook

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from itertools import cycle

# ATOM

#

# Smallest particle of an element which shows all properties of element is called atom.

# Some characteristics of "atoms" are as follows:

# Atom takes part in chemical reactions independently.

# Atom can be divided into a number of sub-atomic particles.

# Fundamental particles of atom are electron, proton and neutron.

# CHARACTERISTICS OF ELECTRON

#

# Charge: It is a negatively charged particle.

# Magnitutide of charge: Charge of electron is 1.6022 x 10-19 Coulomb.

# Mass of electron: Mass of electron is 0.000548597 a.m.u. or 9.1 x 10-31 kg.

# Symbol of electron: Electron is represented by "e".

# Location in the atom: Electrons revolve around the nucleus of atom in different circular orbits.

# CHARACTERISTICS OF PROTON

#

# Charge: Proton is a positively charged particle.

# Magnitude of charge: Charge of proton is 1.6022 x 10-19 coulomb.

# Mass of proton: Mass of proton is 1.0072766 a.m.u. or 1.6726 x 10-27 kg.

# Comparative mass: Proton is 1837 times heavier than an electron.

# Position in atom: Protons are present in the nucleus of atom.

# For latest information , free computer courses and high impact notes visit : www.citycollegiate.com

# CHARACTERISTICS OF NEUTRON

#

# charge: It is a neutral particle because it has no charge.

# Mass of neutron: . Mass of neutron is 1.0086654 a.m.u. or 1.6749 x 10-27 kg.

# Compartive mass: Neutron is 1842 times heavier than an electron.

# Location in the atom: Neutrons are present in the nucleus of an atom.

# Proton Charge=-Electron Charge = 1.6022 x 10-19 Coulomb

# Proton Mass = 1837 Electron Mass

# These are the thicknesses along the radial direction (Fourth Dimensional direction perpendicular to our

# 3D Universe (LightSpeed Expanding Hypersperical Universe).

# The total 4D volume should be identical.

def swap_cols(arr, frm, to):

arr[:,[frm, to]] = arr[:,[to, frm]]

return arr

def swap_rows(arr, frm, to):

arr[[frm, to], :] = arr[[to, frm], :]

return arr

def getSpin(axis=None):

spin = np.identity(4)

if axis is None:

return spin

spin=swap_cols(spin, axis,3)

return spin

def getDilatorSequence(particle=0, axis=0, spin='half'):

hp = 1e-9

he = hp * 1837

ident = np.identity(4)

rotate = getSpin(axis=axis)

rotationMatrix = [ident,rotate,ident,rotate]

# Particle Definition

protonCoeff = np.array([2/3, 2/3, -1/3,hp]).T

electronCoeff = np.array([0,-2/3,-1/3,he]).T

positronCoeff = np.array([0,2/3,1/3,-he]).T

antiprotonCoeff = np.array([-2/3, -2/3, 1/3,-hp]).T

if(spin=='half'):

listA = [protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff,protonCoeff, electronCoeff,antiprotonCoeff, positronCoeff]

else:

listA=[protonCoeff,positronCoeff ,antiprotonCoeff, electronCoeff,protonCoeff,positronCoeff ,antiprotonCoeff,electronCoeff ]

listA = listA[particle:(particle+4)]

dilatorSequence = [np.dot(rotationMatrix[i],listA[i]) for i in np.arange(4)]

A = [x[0:3] for x in dilatorSequence]

return A

# The actual amplitude of the metric distorsion is not know. Considering that it is very, very small

# the metric displacement will be approximated by the sum of the 3D coefficients times the radial thickness

# hp is unknown

class dilator(object):

def __init__(self,particle,axis,spin,ax,position=[0,0]):

self.unit = {}

self.ax=ax

self.particle=particle

self.dilatorSeq=getDilatorSequence(particle=particle, axis=axis, spin=spin)

self.axis=axis

self.center = [position + [i*np.pi/2 ]for i in np.arange(5)]

self.spin=spin

def plotMe(self):

i=0

max_radius = 2.5 * np.pi

for t in self.dilatorSeq:

self.unit[i]=unit(t,self.ax,self.center[i]).plotMe(ax)

i=i+1

plt.show()

# Radii corresponding to the coefficients:

class unit(object):

def __init__(self,coeffs,ax,center=(0,0)):

self.ax = ax

self.coeffs=coeffs

self.charge=np.sum(coeffs)

print(self.charge)

self.center=center

# Scaling factor

a=2

self.rx, self.ry, self.rz = [(e/a+1.0) for e in coeffs]

# Set of all spherical angles:

self.u = np.linspace(0, 2 * np.pi, 100)

self.v = np.linspace(0, np.pi, 100)

def surface(self,center=(0,0,0)):

# Cartesian coordinates that correspond to the spherical angles:

# (this is the equation of an ellipsoid):

u=self.u

v=self.v

x = (self.rx-1) * np.outer(np.cos(u), np.sin(v))+self.center[0]

y = (self.ry-1) * np.outer(np.sin(u), np.sin(v))+self.center[1]

z = (self.rz-1) * np.outer(np.ones_like(u), np.cos(v))+self.center[2]

return x,y,z

def plotMe(self,ax):

# Plot:

x,y,z = self.surface()

color='g'

if(self.charge<0):

color='r'

self.ax.plot_surface(x, y, z, rstride=4, cstride=4, color=color)

if(__name__=='__main__'):

# for spin in ['half', 'minus-half']:

# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Spin= ',spin)

# for particle in np.arange(4):

# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Particle=', particle)

# for axis in np.arange(3):

# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Axis=', axis)

# A = getDilatorSequence(particle=particle, axis=axis, spin=spin)

# print(' spin = ', spin, ' particle = ', particle, ' axis = ', axis)

# for t in A:

# print(t)

# print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')

fig = plt.figure(figsize=plt.figaspect(1))

# Square figure

ax = fig.add_subplot(111, projection='3d')

getattr(ax, 'set_{}lim'.format('x'))((-np.pi / 4, np.pi / 4))

getattr(ax, 'set_{}lim'.format('y'))((-np.pi / 4, np.pi / 4))

getattr(ax, 'set_{}lim'.format('z'))((-np.pi / 4, 2.25 * np.pi))

proton = dilator(particle=0,axis=0,ax=ax,spin='half',position=[0,0])

proton.plotMe()

a=1

- December (5)
- November (4)
- October (13)
- September (7)
- August (5)
- July (6)
- June (5)
- May (5)
- April (7)
- March (6)
- February (7)
- January (5)

- December (4)
- November (13)
- October (10)
- September (3)
- August (24)
- July (12)
- June (2)
- May (1)
- March (4)
- February (12)
- January (4)

- Brian Greene (1)
- Censorship (8)
- Coherent Nuclear Fusion (1)
- Erik Anson (3)
- Hypergeometrical Universe (290)
- Kip Thorne (1)
- Lawrence M. Krauss (1)
- Max Tegmark (1)
- Michio Kaku (2)
- Neil deGrasse Tyson (1)
- Paul Ginsparg (1)
- Science News (2)
- Sheldon Glashow (1)
- The Undiscovered Continent (1)

## Comments

There are currently no comments

## New Comment